Frequency Response Analysis (Part - I)

1. A system has fourteen poles and two zeros. Its high frequency asymptote in its magnitude plot having a slope of:
(a) $-40 \mathrm{~dB} /$ decade
(b) $-240 \mathrm{~dB} /$ decade
(c) $-280 \mathrm{~dB} /$ decade
(d) $-320 \mathrm{~dB} /$ decade
[GATE 1987: 2 Marks]
Soln.
Poles $(\mathrm{P})=14$
Zeros (z) $=2$
$\mathrm{P}-\mathrm{Z}=14-2=12$
$\lim \omega \rightarrow \infty$ slope $=(P-Z)(-20 d B / d e c)$
$=-240 \mathrm{~dB} /$ decade
Ans: Option (b)
2. The polar plot of $(s)=\frac{10}{s(s+1)^{2}}$ intercepts real axis at $\omega=\omega 0$. Then, the real part and ω_{0} are respectively given by:
(a) $-2.5,1$
(b) $-5,0.5$
(c) $-5,1$
(d) $-5,2$

Soln.
$(s)=\frac{10}{s(s+1)^{2}}=\frac{10}{s(s+1)(s+1)}$
$\angle(j \omega)=-90^{0}-2 \tan ^{-1} \omega$
$\omega_{p c}$ is the phase cross over frequency where

$$
\angle(j \omega)=-180^{\circ}
$$

so, $-180^{\circ}=-90^{0}-2 \tan ^{-1} \omega p c$
$2 \tan ^{-1} \omega_{p c}=90^{\circ} \Rightarrow \omega_{p c}=\tan 45^{\circ}$
$\omega p c=1 \mathrm{rad} / \mathrm{sec}$
$|G| \omega=\omega p c=\frac{10}{\omega 1 \overline{+\omega^{2} 1}+\overline{\omega^{2}}}$
$=\frac{10}{1 \overline{2} 2}=\frac{10}{2}=5$
At $\omega=\omega$ pc the polar plot crosses the negative real axis at - 5
Ans: Option (c)

Frequency Response Analysis (Part - I)

3. From the Nicholas chart one can determine the following quantities pertaining to a closed loop system:
(a) Magnitude and phase
(b) Band width
(c) Only magnitude
(d) only phase
[GATE 1989: 2 Marks]
Soln. Nicholas chart is magnitude versus phase plot

Ans: Option (a)

4. The open-loop transfer function of a feedback control system is
(s).H(s) $=\frac{1}{(s+1)^{3}}$ The gain margin of the system is
(a) 2
(b) 4
(c) 8
(d) 16
[GATE 1991: 2 Marks]
Soln. $(s) \cdot(s)=\frac{1}{(s+1)^{3}}$
$G M=\frac{1}{|G(\mathrm{j} \omega \mathrm{pc}) \mathrm{H}(\mathrm{j} \omega \mathrm{pc})|}=\frac{1}{M}$
ω_{p} is the phase cross over frequency where $\angle(s) H(s)=-180^{\circ}$
$G(s) H(s)=\frac{1}{(s+1)(s+1)(s+1)}$
$-3 \tan ^{-1} \omega_{p c}=-180^{0}$
$\tan ^{-1} \omega_{p c}=60^{\circ} \Rightarrow \omega_{p c}=\operatorname{ta}\left(60^{\circ}\right)$
$\omega p c=3 \mathrm{rad} / \mathrm{sec}$
$M=|(j \omega p c) H(j \omega p c)|=\frac{1}{\left(\overline{\left.1+\omega \mathrm{pc}^{2}\right)^{3}}\right.}=\frac{1}{8}$
$G M=\frac{1}{M}=8$
Ans: Option (c)

Frequency Response Analysis (Part - I)

5. Non-minimum phase transfer function is defined as the transfer function
(a) which has zero in the right-half s-plane
(b) which has zero only in the left-half s-plane
(c) which has poles in the right-half s-plane
(d) which has poles in the left-half s-plane
[GATE 1995: 1 Mark]
Soln. Non minimum phase transfer function is defined as the transfer function which has one or more zeros in the right half of s - plane and remaining poles and zeros in the left half of s - plane.

Ans: Option (a)

6. The Nyquist plot of a loop transfer function ($j \omega$) ($j \omega$) of a system encloses the $(-1, j 0)$ point. The gain margin of the system is
(a) less than zero
(b) zero
(c) greater than zero
(d) infinity
[GATE 1998: 1 Mark]
Soln. A system is unstable when Nyquist plot of $(j \omega)(j \omega)$ enclosed the point $(-1, \mathrm{j} 0)$. Gain margin of unstable system is less than zero

Ans: Option (a)
7. The Nyquist plot for the open-loop transfer function $G(s)$ of a unity negative feedback system is shown in the figure, if $G(s)$ has no pole in the right-half of s-plane, the number of roots of the system characteristic equation in the right-half of s-plane is

(a) 0
(b) 1
(c) 2
(d) 3
[GATE 2001: 1 Mark]
Soln.
$\mathrm{N}=\mathrm{P}-\mathrm{Z}$
One encirclement in clockwise direction and one in anticlockwise direction house

$$
\mathrm{N}=0
$$

Frequency Response Analysis (Part - I)

Given that number of poles of $(s)(s)$ in the right half $\mathrm{s}-$ plane, $\mathrm{p}=0$
$\mathrm{N}=\mathrm{P}-\mathrm{Z}$
Or $\mathrm{Z}=\mathrm{P}-\mathrm{N}=0$
So No roots of the characteristic equation or poles of the closed loop system lie in RH of s - plane

Ans: Option (a)

8. In the figure, the Nyquist pole of the open-loop transfer function $(s)(s)$ of a system is shown. If $(s) H(s)$ has one right-hand pole, the closed-loop system is

(a) always stable
(b) unstable with one closed-loop right hand pole
(c) unstable with two closed-loop right hand poles
(d) unstable with three closed-loop right hand poles
[GATE 2003: 1 Mark]
Soln.
$\mathrm{N}=\mathrm{P}-\mathrm{Z}$
The encirclement of critical point $(-1, \mathrm{j} 0)$ is in the anticlockwise direction hence
$\mathrm{N}=1, \mathrm{P}=1$ (given)
$\mathrm{Z}=\mathrm{P}-\mathrm{N}=0$
Hence no poles of closed loop system lie in the RH of s - plane therefore system is always stable.

Ans: Option (a)

9. A system has poles at $0.01 \mathrm{~Hz}, 1 \mathrm{~Hz}$ and 80 Hz ; zero at $5 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 200 Hz . The approximate phase of the system response at 20 Hz is
(a) -90°
(b) 0^{0}
(c) 90°
(d) -180°
[GATE 2004: 2 Marks]

Frequency Response Analysis (Part - I)

Soln.

Phase shift are
Due to Pole at $0.01 \mathrm{~Hz}=-900$
Due to Pole at $1 \mathrm{~Hz}=-90_{0}$
Due to Pole at $80 \mathrm{~Hz}=0$
Not to be considered as the system response at 20 Hz is to be considered
Zero at $5 \mathrm{~Hz}=90^{\circ}$
Zero at $100 \mathrm{~Hz}=$ not be considered
Zero at $200 \mathrm{~Hz}=$ not be considered
Thus approximate total phase shift $=-90-90+90=-90_{0}$
Ans: Option (a)
10. The Nyquist plot of $(j \omega)(j \omega)$ for a closed loop control system, passed through ($-1, \mathrm{j} 0$) point in GH plane. The gain margin of the system in dB is equal to
(a) infinite
(b) greater than zero
(c) less than zero
(d) zero
[GATE 2006: 2 Marks]
Soln. The gain margin of system is negative i.e. less than zero
Ans: Option (c)
11. For the transfer function $(j \omega)=5+j \omega$, the corresponding Nyquist plot for positive frequency has the form
(a)

(b)

(c)

(d)

Frequency Response Analysis (Part - I)

Soln. The transfer function $(j \omega)=5+j \omega$
$|(j \omega)|=25 \overline{+\omega^{2}}$
At $\omega=0,|(0)|=5$
At $\omega=\infty,|(\infty)|=\infty$

Ans: Option (a)

12. Consider the feedback system shown in the figure. The Nyquist plot of $\mathbf{G}(\mathbf{s})$ is also shown. Which one of the following conclusions is correct?

(a) $\mathrm{G}(\mathrm{s})$ is an all-pass filter
(b) $\mathrm{G}(\mathrm{s})$ is strictly proper transfer function
(c) $\mathrm{G}(\mathrm{s})$ is a stable and minimum-phase transfer function
(d) The closed-loop system is unstable for sufficiently large and positive K.

Soln. Nyquist plot is not enclosed critical point $(-1, \mathrm{j} 0)$, hence the system is stable. If the value of gain K is increased, then intersection point moves towards $-\infty$ on the negative real axis which makes system unstable.

Ans: Option (d)

